

Nome:

Mini-Ficha de Avaliação de Matemática

9.º Ano Marco 2010

) IBEIRÃO	Professor:	Enc. Educação:
		N.º Turma: Classificação:

Para cada questão de escolha múltipla são indicadas quatro alternativas, das quais só uma está correcta. Assinale a alternativa que escolheu para responder à questão. Não apresente cálculos. Justifica convenientemente todas as outras respostas, apresentando todos os cálculos que efectuar

Cotação Atribuída

1. O João e a Ana fazem anos no mês de Abril.

Sabendo que a Ana faz anos no dia 12 de Abril, qual é a probabilidade de o João fazer anos antes da Ana? Apresenta o resultado na forma de percentagem arredondado às décimas.

2. Num saco há 8 bolas brancas. A Ana vai colocar na caixa bolas pretas.

Quantas bolas pretas tem de colocar para que a probabilidade de tirar, ao acaso, uma bola branca seja $\frac{2}{3}$?

(A) 2

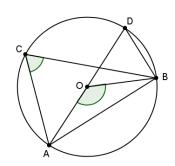
(B) 4

(C) 8

- **(D)** 12
- 3. Resolva, em IR, a seguinte equação, pelo método que achar mais conveniente.

$$x(x-1) = \frac{2-4x}{3}$$

- **4.** As soluções da equação $x^2 = 6x$ são:
 - **(A)** -6 e 0
- **(B)** −6 e 1
- (C) -6 e 6
- (D) 0 e 6
- 5. O Manuel inventou o seguinte problema: "A diferença entre o quadrado do número de moedas que o meu pai tem e cinco é igual ao quádruplo do número de moedas que o meu pai tem." Quantas moedas tem o pai do Manuel? Apresenta todos os cálculos que efectuares.
- **6.** A equação $kx^2 6x + 5 = 0$ não tem soluções em IR se :


(A)
$$k = \frac{9}{5}$$

(B)
$$k \in \left[-\infty, \frac{9}{5}\right]$$

(B)
$$k \in \left] -\infty, \frac{9}{5} \right[$$
 (C) $k \in \left] \frac{9}{5}, +\infty \right[$ **(D)** $k \in \left] -2, 3 \right[$

(D)
$$k \in]-2,3$$

- 7. Na figura está representada uma circunferência, de centro O, em que:
 - A, B, C, D e E são pontos da circunferência
 - \widehat{BD} = 50° e [AD] é um diâmetro da circunferência
 - **7.1.** Determina $A\hat{O}B \in A\hat{C}B$.
 - **7.2.** Classifica quanto à amplitude dos ângulos o triângulo [ABD]. Justifica.

Cotações										
Questão	1	2	3	4	5	6	7.1	7.2		
Cotação	5	5	8	5	8	5	6	4		

FIM

Bom Trabalho!

Soluções:

1.
$$p = \frac{11}{30} \approx 0,367 = 36,7\%$$

- **2.** (B)
- **3.** $S = \left\{-1, \frac{2}{3}\right\}$
- **4.** (D)
- 5. O pai do Manuel tem 5 moedas.

Nota: considera x o número de moedas do pai do Manuel. O enunciado pode ser traduzido pela equação $x^2 - 5 = 4x$, resolve-a e encontra a solução.

6. (C). Nota: para a equação não ter soluções em IR terás de obrigar a que $\Delta < 0$.

7.1.
$$A\hat{O}B = 130^{\circ} \text{ e } A\hat{C}B = \frac{130^{\circ}}{2} = 65^{\circ}.$$

7.2. O triângulo é rectângulo porque tem um ângulo recto em B, dado que o $\angle ABD$ é um ângulo inscrito numa semicircunferência, logo $A\hat{B}D = \frac{180^{\circ}}{2} = 90^{\circ}$.