ANO LECTIVO 2010/2011

Fevereiro 2011

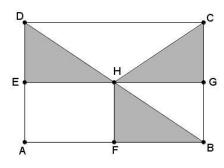
9.º Ano

Nome:	N.º: Turma: Classificação:	
Professor:	Enc. Educação:	

Versão 1

7

 O Artur, o Bernardo, a Cecília e a Dora vão formar uma lista para se candidatarem às eleições para a Associação de Estudantes, Para formalizar a candidatura, terão de indicar o nome do presidente e do vicepresidente da lista. Decidiram sortear quem assumiria estes cargos. Escreveram os nomes em quatro papéis iguais, dobraram-nos da mesma forma e colocaram-nos num saco. Um dos amigos retira um papel do saco, regista o nome da pessoa que saiu e de seguida, sem repor o primeiro papel no saco, retira outro e regista também o nome que saiu. O primeiro nome a sair será o Presidente e o segundo o Vice-Presidente. Determina a probabilidade de estes cargos serem ocupados por dois alunos do mesmo sexo. Apresenta o resultado na forma de fracção irredutível.


5

2. Na figura ao lado, está representado o rectângulo [ABCD]. Os pontos E, F e G são os pontos médios de [AD], [AB] e [BC]respectivamente.

Sabe-se ainda que a área do rectângulo [ABCD] é 40 cm². Qual é a área da região representada a sombreado?

5

3. Qual das expressões seguintes é equivalente a $(x-1)^2 + 3x$? Assinala a opção correcta.

$$(A) x^2 + 2x = 1$$

(A)
$$x^2 + 3x - 1$$
 (B) $x^2 + 3x + 1$ (C) $x^2 + x - 1$

(C)
$$x^2 + x - 1$$

(D)
$$x^2 + x + 1$$

5

4. A Maria faz anos na próxima semana e os amigos estão a organizar-se para lhe comprar uma prenda em conjunto. Se cada um tiver de pagar 3,50€ são precisos mais seis amigos do que se cada um pagasse 5€. Quanto custa a prenda?

5

5. Resolve as seguintes equações do 2.º grau.

5.1.
$$x^2 - 10 = 0$$

5

5.2.
$$x^2 - 3x = 0$$

8

5.3.
$$(x-4)^2 = x+16$$

Escola EB 2,3 de Ribeirão (Sede)

ANO LECTIVO 2010/2011

Questão de Aula de Matemática n.º 4

ENTO
X
10
BERRO

Fevereiro 2011

9.º Ano

G

Nome:	N.º: Turma: Classificação:	
Professor:	Enc. Educação:	

Versão 2

7

1. O Artur, o Bernardo, a Cecília e a Dora vão formar uma lista para se candidatarem às eleições para a Associação de Estudantes, Para formalizar a candidatura, terão de indicar o nome do presidente e do vicepresidente da lista. Decidiram sortear quem assumiria estes cargos. Escreveram os nomes em quatro papéis iguais, dobraram-nos da mesma forma e colocaram-nos num saco. Um dos amigos retira um papel do saco, regista o nome da pessoa que saiu e de seguida, sem repor o primeiro papel no saco, retira outro e regista também o nome que saiu. O primeiro nome a sair será o Presidente e o segundo o Vice-Presidente. Determina a probabilidade de estes cargos serem ocupados por dois alunos de sexos diferentes. Apresenta o resultado na forma de fracção irredutível.

5

2. Na figura ao lado, está representado o rectângulo [ABCD]. Os pontos E, F e G são os pontos médios de [AD], [AB] e [BC] respectivamente.

Sabe-se ainda que a área do rectângulo [ABCD] é 48 cm². Qual é a área da região representada a sombreado?

5

3. Qual das expressões seguintes é equivalente a $(x-3)^2 + 5x$? Assinala a opção correcta.

$$(\Lambda) x^2 x + 0$$

(B)
$$x^2 + x - 9$$

(C)
$$x^2 + 3x + 9$$

(A)
$$x^2 - x + 9$$
 (B) $x^2 + x - 9$ (C) $x^2 + 3x + 9$ (D) $x^2 - 6x + 9$

5

4. O Manuel faz anos na próxima semana e os amigos estão a organizar-se para lhe comprar uma prenda em conjunto. Se cada um tiver de pagar 4,50€ são precisos mais quatro amigos do que se cada um pagasse 6€. Quanto custa a prenda?

5. Resolve as seguintes equações do 2.º grau.

5.1.
$$x^2 - 12 = 0$$

5

5

5.2.
$$x^2 - 5x = 0$$

8

5.3.
$$(x-7)^2 = x+49$$

Versão 1

Soluções:

1. $p(\text{mesmo sexo}) = \frac{4}{12} = \frac{1}{3}$

Considere-se A – Artur; B – Bernardo; C – Cecília e D – Dora.

Podemos utilizar uma tabela de dupla entrada (ou a um diagrama de árvore) para contabilizar de forma mais fácil os casos possíveis/favoráveis.

		Vice-Presidente			
		Α	В	С	D
Ð	Α		(A,B)	(A,C)	(A,D)
Presidente	В	(B,A)		(B,C)	(B,D)
	С	(C,A)	(C,B)		(C,D)
<u>.</u>	D	(D,A)	(D,B)	(D,C)	

Há portanto 4 casos favoráveis nos 12 possíveis.

Nota: a mesma pessoa não pode ser seleccionada para os dois cargos ao mesmo tempo (a extracção do papel é feita sem **reposição**), daí estarem 4 casas sombreadas na tabela de dupla entrada (casos que não podem ocorrer).

- 2. (B)
- 3. (D)
- 4. A prenda custa 70€.

Nota: É uma situação de Proporcionalidade Inversa

n.º amigos	x	x + 6
Preço a pagar por cada um (€)	5	3,50

Uma vez que o produto dos valores correspondentes das variáveis em causa têm de dar sempre o mesmo (constante de proporcionalidade inversa), podemos afirmar que:

$$5x = 3,50(x+6) \Leftrightarrow 5x = 3,5x + 21 \Leftrightarrow 1,5x = 21 \Leftrightarrow x = \frac{21}{1.5} \Leftrightarrow x = 14$$

ou seja, para cada um pagar $5 \in 5$ são precisos 14 amigos ou se cada um pagar $3,50 \in 5$ são precisos 20 amigos. Sendo assim a prenda custa $70 \in (14 \times 5 = 70)$ ou $20 \times 3,50 = 70$).

5.1.
$$S = \left\{ -\sqrt{10}, \sqrt{10} \right\}$$

5.2.
$$S = \{0,3\}$$

5.3.
$$S = \{0,9\}$$

Versão 2

Soluções:

1.
$$p(\text{sexo diferente}) = \frac{8}{12} = \frac{2}{3}$$

Considere-se A – Artur; B – Bernardo; C – Cecília e D – Dora.

Podemos utilizar uma tabela de dupla entrada (ou a um diagrama de árvore) para contabilizar de forma mais fácil os casos possíveis/favoráveis.

		Vice-Presidente			
		Α	В	С	D
Φ	Α		(A,B)	(A,C)	(A,D)
Presidente	В	(B,A)		(B,C)	(B,D)
	С	(C,A)	(C,B)		(C,D)
	D	(D,A)	(D,B)	(D,C)	

Há portanto 8 casos favoráveis nos 12 possíveis.

Nota: a mesma pessoa não pode ser seleccionada para os dois cargos ao mesmo tempo (a extracção do papel é feita sem **reposição**), daí estarem 4 casas sombreadas na tabela de dupla entrada (casos que não podem ocorrer).

- 2. (C)
- 3. (A)
- 4. A prenda custa 72€.

Nota: É uma situação de Proporcionalidade Inversa

n.º amigos	x	x + 4
Preco a pagar por cada um (€)	6	4.50

Uma vez que o produto dos valores correspondentes das variáveis em causa têm de dar sempre o mesmo (constante de proporcionalidade inversa), podemos afirmar que:

$$6x = 4,50(x+4) \Leftrightarrow 6x = 4,5x+18 \Leftrightarrow 1,5x = 18 \Leftrightarrow x = \frac{18}{1.5} \Leftrightarrow x = 12$$
,

ou seja, para cada um pagar $6 \in 8$ são precisos 12 amigos ou se cada um pagar $4,50 \in 8$ são precisos 16 amigos. Sendo assim a prenda custa $72 \in (12 \times 6 = 72)$ ou $16 \times 4,50 = 72$.

5.1.
$$S = \left\{ -\sqrt{12}, \sqrt{12} \right\}$$

5.2.
$$S = \{0, 5\}$$

5.3.
$$S = \{0,15\}$$