
		$(\sim$	uc,
ANO LETIV	/O 2	2011/	2012

Questão de Aula de Matemática n.º 4

1	Janeiro /	201	2

Nome:	N.º: Turma:	Classificação:/40
Drofossor:	Enc. Educação:	

D

Η

- 1. A Laura comprou uma caixa com materiais para construção de sólidos. Na caixa, havia dois tipos de peças: Cotações uns pauzinhos que vão constituir as arestas e esferas que vão constituir os vértices.
 - 1.1. A informação indicada no exterior da caixa refere que esta tem um total de 225 peças. No entanto, a Laura reparou que o número de esferas excede o dobro do número de peças que vão ser as arestas em cinco unidades.

Quantas peças de cada tipo tem a caixa?

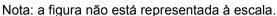
Escreve um sistema de duas equações do 1.º grau que traduza este problema, indicando o que representa cada uma das variáveis utilizadas. Não resolvas o sistema.

1.2. Sabe-se que a Laura levou a caixa completa para casa da sua tia, mas quando voltou para sua casa esqueceu-se de algumas peças na da tia, trazendo menos de 80 esferas.

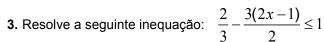
Quando chegou a casa, decidiu construir alguns sólidos com as peças que tinha trazido de casa da sua tia. Ao construir apenas prismas retangulares ou apenas pirâmides hexagonais, a Laura verificou que não lhe sobrava nenhuma esfera. Quando tentou construir várias pirâmides quadrangulares, verificou que sobrava 1 esfera para as conseguir utilizar todas.

Quantas esferas trouxe a Laura de casa da sua tia?

Mostra como chegaste à tua resposta.


2. Observa a figura onde está representado um dos azulejos utilizados na cozinha da Joana. Na figura está representado um retângulo [ABCD].

•
$$\overline{DC} = 9$$
;


$$\bullet \ \overline{BC} = 12;$$

$$\overline{HC} = \frac{2}{3}\overline{DC} .$$

Determina o valor da área do triângulo [DGH] (triângulo a sombreado na figura).

Apresenta todos os cálculos efetuados.

Apresenta o conjunto-solução na forma de intervalo de números reais.

Qual dos seguintes intervalos é igual a $A \cap B$? Assinala a opção correta.

(A)
$$\left[-\pi; \frac{16}{3} \right]$$

(D)
$$\left[5; \frac{16}{3} \right]$$

В

5. A Ana comprou um saco com rebuçados de sabores variados. Ao abrir o saco decidiu ver rebuçados de cada quantos sabor tinha, organizando os dados na tabela ao lado.

Sabor	Morango	Ananás	Banana	Laranja
N.º de	8	6	6	4
rebuçados	U	0	0	7

5.1. A Ana retirou, ao acaso, um rebuçado do saco.

Qual a probabilidade do rebuçado retirado pela Ana não ser de banana? Assinala a opção correta.

(A)
$$\frac{1}{4}$$

(B)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$

(D)
$$\frac{3}{4}$$

5.2. A Ana decidiu comer um rebuçado por dia. No primeiro e segundo dias comeu um rebuçado de banana, no terceiro um de ananás e no quarto um de morango.

Qual a probabilidade de no quinto dia comer um rebuçado de banana?

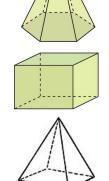
Apresenta o resultado na forma de fração irredutível.

Mostra como chegaste à tua resposta.

TOTAL

Soluções

Versão 1


1.1. $x - \text{n.}^{\circ}$ de arestas, $y - \text{n.}^{\circ}$ de esferas (vértices). Um sistema que permite resolver este problema é: $\begin{cases} x + y = 225 \\ y = 2x + 5 \end{cases}$

1.2. A Laura trouxe 56 esferas de casa da sua tia.

Nota: O número pretendido é o que satisfaz as quatro condições seguintes:

- Inferior a 80:
- Múltiplo de 7 (pirâmides hexagonais 7 vértices);
- Múltiplo de 8 (prismas retangulares 8 vértices);
- Dividido por 5 dá resto 1 (pirâmides quadrangulares 5 vértices).

 $M_7 = \{7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, ...\}$

 $M_8 = \{8, 16, 24, 32, 40, 48, 56, 64, 72, ...\}$

 $M_{5+1} = \{1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, ...\}$

Logo, a Laura trouxe 56 esferas. Nota: $56 = 7 \times 8$ (múltiplo de 7 e de 8) e $56 = 5 \times 11 + 1$ (dividido por 5 dá resto 1).

2. A área do triângulo é 6. Nota: Tendo em atenção às condições do enunciado podemos concluir que $\overline{HC} = \frac{2}{3} \times 9 = 6$ e

 $\overline{DH} = \overline{DC} - \overline{HC} = 9 - 6 = 3$. Os triângulos [BCD] e [GHD] são semelhantes porque têm dois ângulos geometricamente iguais, logo os comprimentos dos lados correspondentes vão ser diretamente proporcionais. Deste modo estabelecendo a seguinte proporção $\overline{\frac{GH}{12}} = \frac{3}{9}$ podemos concluir que $\overline{GH} = 4$.

$$\operatorname{Logo} A_{\Delta[GHD]} = \frac{4 \times 3}{2} = 6.$$

$$3. S = \left\lceil \frac{7}{18}, +\infty \right\rceil$$

- **4.** (B)
- **5.1.** (D)
- **5.2.** $p(rebuçado\ banana\ 5.^{\circ}\ dia) = \frac{4}{20} = \frac{1}{5}$