Escola Básica de Ribeirão (Sede)

Ficha de Trabalho – Preparação Exame I

201<u>1/2</u>012

wordpress **SOLUÇÕES**

2.
$$k = -12$$
. Nota: $\left(\frac{1}{27}\right)^4 = \left(3^{-3}\right)^4 = 3^{-12}$

3.1.
$$p = \frac{9}{25}$$

3.2.
$$\overline{x} = \frac{58}{25} = 2,32$$

3.1. $p = \frac{9}{25}$ **3.2.** $\overline{x} = \frac{58}{25} = 2{,}32$ **3.3.** Cada um dos alunos novos tinha 3 ou 4 televisores.

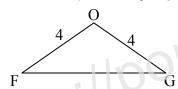
4.
$$S = \left[-\infty; -\frac{7}{16} \right]$$
. Nota: $(...) \Leftrightarrow -\frac{3}{4}x^2 + 3x - 3 - \frac{x}{3} + \frac{2}{3} \ge 8x - \frac{3}{4}x^2 \Leftrightarrow (...) \Leftrightarrow x \le -\frac{7}{16}$

5.
$$A_{[BCI]} = \frac{8 \times 4}{2} = 16$$
.

O comprimento da base é igual à abcissa do ponto I que tem ordenada 2, então: $2 = 6 - 0.5x \Leftrightarrow x = 8$

O comprimento da altura é igual à diferença entre a ordenada do ponto B e a ordenada do ponto C:

$$altura = 6 - 2 = 4$$



$$F\hat{O}G = 120^{\circ} (360^{\circ} \div 3 = 120^{\circ})$$

 $\hat{OFG} = F\hat{G}O = 30^{\circ} (180^{\circ} - 120^{\circ} = 60^{\circ}; 60^{\circ} \div 2 = 30^{\circ})$

Traçar a altura relativa a [FG] obtendo dois triângulos retângulos e considerar um deles.

Determinar x:

$$\cos 30^0 = \frac{x}{4} \Leftrightarrow x = 4\cos 30^0$$

$$\overline{FG} = 2 \times 4\cos 30^\circ = 8\cos 30^\circ$$

$$\overline{FG} = 2 \times 4\cos 30^{\circ} = 8\cos 30^{\circ}$$
 $P_{[EFG]} = 3 \times 8\cos 30^{\circ} = 24\cos 30^{\circ} \approx 20.8$

7.
$$-\sqrt{9.5}$$
 (por exemplo). Nota: $-3 = -\sqrt{9}$; $-\sqrt{10} < -2$

7.
$$-\sqrt{9,5}$$
 (por exemplo). Nota: $-3 = -\sqrt{9}$; $-\sqrt{10} < -\pi$
8. $(x;y) = (0;-1)$. Nota: a forma canónica deste sistema é
$$\begin{cases} -12x - 3y = 3 \\ -3x + 2y = -2 \end{cases}$$
9.1. $1,7km$. Nota: $D = 1700 - 200 \times 0 = 1700m$
9.2. 8 minutos e 30 segundos. Nota: $t = \frac{1700}{200} = 1700m$

9.1. 1,
$$7 \, km$$
 . Nota: $D = 1700 - 200 \times 0 = 1700 \, m$

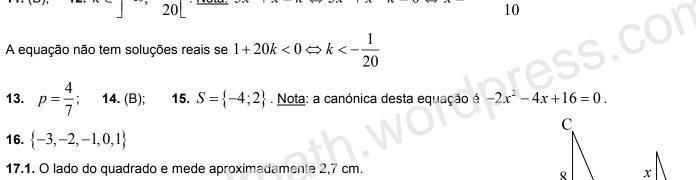
9.1. 1, 7 km . Nota:
$$D = 1700 - 200 \times 0 = 1700 m$$
 9.2. 8 minutos e 30 segundos. Nota: $t = \frac{1700}{200} = 8,5 min$

10.1. A expressão do termo geral é $n^2 + 2n + 3$.

Nota: Sequência das bolas pretas: 2n+3; sequência das bolas brancas: n^2

10.2. Tem 41 bolas pretas. Nota: $n^2 + 2n + 3 = 402 \Leftrightarrow n = 19 \lor n = -21$, mas só interessa a solução positiva pois n é um número natural. Número de bolas pretas = $2 \times 19 + 3 = 41$.

11. (B); **12.**
$$k \in \left[-\infty; -\frac{1}{20} \right]$$
. Nota: $5x^2 + x = k \Leftrightarrow 5x^2 + x - k = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 20k}}{10}$

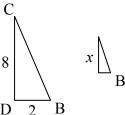


16.
$$\{-3, -2, -1, 0, 1\}$$

17.1. O lado do quadrado e mede aproximadamente 2,7 cm.

Nota: Considera os triângulos ao lado.

Os triângulos são semelhantes porque têm dois ângulos congruentes (geometricamente iguais), o ângulo reto e o de vértice em B.



Considerando uma redução, $r = \frac{x}{\varrho}$, concluímos que o comprimento da base do triângulo reduzido é $2 \times \frac{x}{\varrho} = \frac{x}{4}$.

$$\overline{AB} = \frac{x}{4} + \frac{x}{4} + x$$
, e como tal, $\frac{x}{4} + \frac{x}{4} + x = 4 \Leftrightarrow x = \frac{8}{3} \Leftrightarrow x \approx 2,7 \, cm$.

17.2. 76°. Nota: Seja
$$\alpha$$
 a amplitude do ângulo ABC, $tg\alpha = \frac{8}{2} \Leftrightarrow \alpha = tg^{-1}(4) \Leftrightarrow \alpha \approx 76^{\circ}$.

18.1. Concorrentes não perpendiculares; por exemplo AB; concorrentes não perpendiculares; por exemplo PQR.

18.2. V_{prisma} = 288. Nota: [EFGH] é semelhante a [PQRO] cuja área é igual a 144. A <u>razão entre as áreas</u> é igual a 9 e a razão de semelhança é 3, então a altura da pirâmide [EFGHV] é igual a 27 : 3 = 9.

Logo, a altura do prisma é igual a 27 – 9 = 18 e o volume é igual a 16 x 18 = 288.

19.1. Paga 186 cêntimos = 1,86 euros . Nota: Meia hora = 30 minutos. Paga 12 cêntimos pelo 1.º minuto e 174 cêntimos pelos outros 29 minutos, dado que 29 minutos = 1740 segundos e 0,1 x 1740 = 174 cêntimos. 19.2. (D).

20. Estavam ocupados 6 quartos Twin. Nota: Seja x, o número de quartos Single e y, o número de quartos Twin.

Um sistema que permite resolver este problema é: $\begin{cases} x + y = 52 \\ x + 2y = 58 \end{cases} \Leftrightarrow \begin{cases} x = 46 \\ y = 6 \end{cases}$

21. $p = \frac{2}{3}$. Nota: O número de casos possíveis é 7. Um número é divisível por 3 quando a soma dos seus algarismos der um múltiplo de 3, logo, para isso acontecer, o último algarismo só pode ser o 6 (2 casos favoráveis).

22. h varia entre 2,5 e 4,7 metros. Nota: Quando $\alpha=30^\circ$, temos que $sen 30^\circ=\frac{h}{5} \Leftrightarrow h=2,5$. Quando $\alpha=70^\circ$

temos que $sen70^{\circ} = \frac{h}{5} \Leftrightarrow h \approx 4,70$.

23.1. O triângulo é retângulo porque o ângulo ACB é inscrito numa semicircunferência, logo é reto.

23.2.1.
$$A\hat{C} = A\hat{O}C = 40^{\circ}$$
, $C\hat{A}B = 90^{\circ} - 20^{\circ} = 70^{\circ}$, $A\hat{C}O = 180^{\circ} - 70^{\circ} - 40^{\circ} = 70^{\circ}$

23.2.2. 40° ou -320° .

23.2.3.
$$A_{sombreada} = A_{\odot} - A_{\Delta} = 36\pi - \frac{4,10 \times 11,28}{2} \approx 23,1$$
.

Nota: $A_{\odot} = 36\pi \iff \pi r^2 = 36\pi \iff r^2 = 36 \iff r = \pm \sqrt{36} \implies r = 6$ (porque se trata de um comprimento);

$$\overline{AB} = 12$$
, $sen 20^{\circ} = \frac{\overline{CA}}{12} \Leftrightarrow \overline{CA} = 12sen 20^{\circ} \Leftrightarrow \overline{CA} \simeq 4{,}10$; $\cos 20^{\circ} = \frac{\overline{CB}}{12} \Leftrightarrow \overline{CB} = 12\cos 20^{\circ} \Leftrightarrow \overline{CB} \simeq 11{,}28$

24. (D)

25. Seja a a altura de um dos cones, então a altura do outro cone é h-a.

$$V_{cone} + V_{outro\ cone} = \frac{\pi r^2 \times a}{3} + \frac{\pi r^2 \times (h - a)}{3} = \frac{\pi r^2 a}{3} + \frac{\pi r^2 h}{3} - \frac{\pi r^2 a}{3} = \frac{\pi r^2 h}{3}$$

25. Seja
$$a$$
 a altura de um dos cones, então a altura do outro cone é $h-a$.
$$V_{cone} + V_{outro\ cone} = \frac{\pi r^2 \times a}{3} + \frac{\pi r^2 \times (h-a)}{3} = \frac{\pi r^2 a}{3} + \frac{\pi r^2 h}{3} - \frac{\pi r^2 a}{3} = \frac{\pi r^2 h}{3}$$
26.1. $A_{sombreada} = A_{[GFHJ]} + 2 \times A_{[BEF]} = x(8-2x) + 2 \times \left(\frac{(12-x)x}{2}\right) = 8x - 2x^2 + 12x - x^2 = -3x^2 + 20x$

26.2.
$$-3x^2 + 20x = 17 \Leftrightarrow (...) \Leftrightarrow x = \frac{17}{3} \lor x = 1$$
. No entanto, tendo em conta que $\overline{BC} = 8$, x não pode ser igual

$$\frac{17}{3}$$
 porque $\overline{EF} + \overline{HI} = \frac{17}{3} + \frac{17}{3} = \frac{34}{3} > 8$ que é o valor de \overline{BC} . Logo $x = 1$ é a única solução deste problema.

- **28.** $p(obter\ 6\ pontos) = \frac{4}{64} = \frac{1}{16}$. <u>Nota</u>: Elabora uma tabela de dupla entrada.
- 29. (D) http://portalmath.wordpress.com