Escola Básica de Ribeirão (Sede)

ANO LETIVO 2012/2013

SOLUÇÕES

9.º Ano

Compilação de Exercícios de Exames Nacionais (EN) e de Testes Intermédios (TI)

Tema: Equações do 2º grau

1.
$$S = \{-4; 2\};$$
 2. $S = \{-4; 1\};$ **3.** (C): **4.** $S = \{-1; 2\};$ **5.** $S = \{-1; 5\};$ **6.** $S = \{-\frac{1}{2}; 2\};$ **7.** $S = \{-1; 5\};$

8.
$$S = \left\{-1; \frac{1}{5}\right\};$$
 9. $S = \left\{-1, \frac{5}{6}\right\};$ **10.** $\overline{AD} = \sqrt{42}$. Nota: considera $x = \overline{AD}$, a equação que te permite resolver este

problema é
$$9 \times 12 + x^2 = \left(\sqrt{150}\right)^2$$
; **11.** $S = \left\{-2, 3\right\}$; **12.** $S = \left\{-1, -\frac{1}{2}\right\}$; **13.** $b \in \left\{-6, 6\right\}$ Nota: A equação tem uma

raiz dupla se
$$\Delta = 0 \Leftrightarrow b^2 - 4 \times 1 \times 9 = 0 \Leftrightarrow b^2 = 36 \Leftrightarrow b = \pm \sqrt{36} \Leftrightarrow b = \pm 6$$
; **14.** $S = \left\{-\frac{6}{5}; 1\right\}$; **15.** $S = \left\{-1; 6\right\}$;

16.
$$S = \{-1, 5\}$$
; **17.** $S = \{-1, 7\}$; **18.** $S = \{-1, 2\}$; **19.** $S = \{-3, 2\}$.

Exercícios Complementares:

- **20.** O retângulo tem 25 m de comprimento e 17 m de largura. Nota: considerando x a largura do retângulo, a equação que permite resolver este problema é (x+8)x = 425.
- **21.** A Maria tem 10 anos. Nota: considerando x a idade da Maria, a equação que permite resolver este problema é $2x^2 + 3x = 230$.
- 22. O retângulo tem 10 cm de comprimento e 8 cm de largura. Nota: a equação que permite resolver este problema é $(2x+6)(3x+2)-x^2=76$.
- 23.1. (D); 23.2. A Joana tem 9 moedas
- **24.** O Evaristo podía estar a pensar no número -4 ou no 8. Nota: a equação que permite resolver este problema é $x^2-4(x+3)=20$.
- 25. O Artur aposta sempre nos números 7, 8 e 9. Nota: a equação que permite resolver este problema é $x^{2} + (x+1)^{2} + (x+2)^{2} = 194$.
- **26.** (B). Nota: A equação tem uma raiz dupla se $\Delta = 0$.
- **27.** $c \in]-\infty,2[$. Nota: A equação tem uma raiz dupla se $\Delta > 0$.
- **28.** $p \in]-\infty, -8[$. Nota: A equação não tem soluções reais se $\Delta < 0$.
- **29.** $r \in \{-4, 4\}$. Nota: a forma canónica desta equação é $x^2 rx + 4 = 0$ e terá apenas uma solução real se $\Delta = 0$.
- **30.** $s \in \left[-\infty, \frac{4}{3}\right]$. Nota: A equação tem pelo **menos uma** solução real, ou seja, <u>no mínimo uma solução real</u> se $\Delta \ge 0$ (1 solução $\rightarrow \Delta = 0$ ou 2 soluções $\rightarrow \Delta > 0$).

NOTA: Podes encontrar uma sugestão de resolução destas questões no PortalMath, para isso basta veres de onde foi retirada a questão (Teste intermédio ou Exame Nacional) e o respetivo ano, consultares as páginas onde estão os todos Testes Intermédios (http://portalmath.wordpress.com/ti-9ano/) **Exames Nacionais** (http://po_talmath.wordpress.com/exames-9ano/) e clicares no link relativo à resolução do mesmo.

Podes (e deves...) também recorrer ao teu professor de Matemática, para te esclarecer as dúvidas que surgirem.